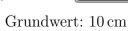
- Übungen und Vertiefungen zum Downloadbalken -Lösungen -



Aufgabe 1: Berechne die gesamte Downloaddauer.

Downloading... vergangene Zeit: 3 min

a)

Prozentwert: $2 \, \mathrm{cm}$

relativer Anteil: $20\% = \frac{1}{5}$

Gesamtdownloaddauer: $3 \min \cdot 5 = 15 \min$

Downloading... vergangene Zeit: 4 min

b)

Grundwert: 8 cm

Prozentwert: 1 cm

relativer Anteil: $12,5\% = \frac{1}{9}$

Gesamtdownloaddauer: $4 \min \cdot 8 = 32 \min$

Downloading... verbleibende Zeit: 5 min

c)

Grundwert: 9 cm

Prozentwert: $6\,\mathrm{cm}$

relativer Anteil: $66, \bar{6}\% = \frac{2}{3}$

fehlend: $\frac{1}{3}$ \Rightarrow Gesamtdownloaddauer: $5 \min \cdot 3 = 15 \min$

Aufgabe 2: Berechne die gesamte Downloaddatenmenge.

Downloading... bereits runtergeladen: 6,5 GB

a)

Grundwert: 12 cm

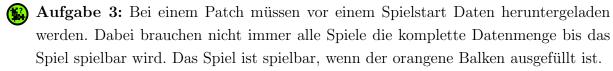
Prozentwert: 4 cm

relativer Anteil: $33, \bar{3}\% = \frac{1}{3}$

Gesamtdownloaddauer: $6, 5 \, \text{GB} \cdot 3 = 19, 5 \, \text{GB}$

Downloading... noch 800 MB runter zu laden

b)


Grundwert: 9 cm

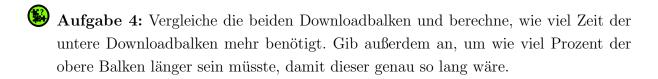
Prozentwert: $7,5\,\mathrm{cm}$

relativer Anteil: $83, \bar{3}\% = \frac{5}{6}$

fehlend: $\frac{1}{6}$ \Rightarrow Gesamtdownloaddauer: 800 MB·6 = 2400 MB

- Übungen und Vertiefungen zum Downloadbalken -Lösungen -

- a) Berechne die Downloaddauer.
- Berechne wann das Spiel spielbar ist.
- Berechne wie viel Prozent bis zur Spielbarkeit des Spiels schon herunter geladen wurden.


Downloading... vergangene Zeit: 6 min

a)
$$\frac{3 \text{ cm}}{10 \text{ cm}} = 30\% \implies 6 \text{ min} \cdot \frac{10}{3} = 20 \text{ min}$$

b) $\frac{7 \text{ cm}}{10 \text{ cm}} = 70\% \implies 20 \text{ min} \cdot 70\% = 14 \text{ min}$
c) $\frac{3 \text{ cm}}{7 \text{ cm}} = 42, \overline{857142}\%$

b)
$$\frac{7 \text{ cm}}{10 \text{ cm}} = 70\% \implies 20 \text{ min} \cdot 70\% = 14 \text{ min}$$

c)
$$\frac{3 \text{ cm}}{7 \text{ cm}} = 42, \overline{857142}\%$$

Downloading... vergangene Zeit: 6 min

Oben:
$$\frac{4 \text{ cm}}{10 \text{ cm}} = 40\% \implies 6 \text{ min} \cdot \frac{10}{4} = 15 \text{ min}$$

Unten: $\frac{4 \text{ cm}}{12 \text{ cm}} = 33, \bar{3}\% \implies 6 \text{ min} \cdot 3 = 18 \text{ min}$

Unten:
$$\frac{4 \text{ cm}}{12 \text{ cm}} = 33, \bar{3}\% \implies 6 \text{ min} \cdot 3 = 18 \text{ min}$$

Unten: $\frac{40\text{m}}{12\text{ cm}} = 33, \bar{3}\% \implies 6 \text{ min} \cdot 3 = 18 \text{ min}$ Somit braucht der untere Download drei Minuten länger.

=20% $\;\Rightarrow\;$ Der obere Download müsste 20% länger dauern, damit diese gleichlange andauern würden.

- Übungen und Vertiefungen zum Downloadbalken -Lösungen -

Aufgabe 5: Berechne wie viel Zeit einer der Kästen symbolisiert. Beschreibe deinen Rechenweg.

Downloading... verbleibende Zeit: 7 min

$$\frac{8\,\mathrm{cm}}{10\,\mathrm{cm}} = 80\% \quad \Rightarrow \quad 7\,\mathrm{min} \cdot 5 = 35\,\mathrm{min} \quad \Rightarrow \quad 35\,\mathrm{min} \colon 16 = 2,1875\,\mathrm{min}$$

Aufgabe 6: Berechne wie viel Zeit ein Prozent des Downloadbalken entsprechen. Beschreibe deinen Rechenweg.

Downloading... vergangene Zeit: 20 min

$$\frac{4 \, \mathrm{cm}}{10 \, \mathrm{cm}} = 40\% \quad \Rightarrow \quad 20 \, \mathrm{min} \cdot \frac{10}{4} = 50 \, \mathrm{min} \quad \Rightarrow \quad 50 \, \mathrm{min} \colon 100 = 0, 5 \, \mathrm{min}$$